Lecture 1: Introduction and
Complex Number
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¢ Particle-wave duality
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e Quantum computer vs. Classic
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The Algebra Property The Geometry Property
* Ordered pair representation e Cartesian and polar representation
¢ Addition and multiplication * Benefits of polar representation
e Commutativity, associativity and e Cartesian-to-polar and polar-to-
distributive law Cartesian representation
e Subtraction and division
e Modulus

e Conjugate
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1. Introduction to QC

The Advent of
Quantum Computing

Andrew C. Yao
Tsinghua University
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Source: Andrew C. Yao, The Advent of Quantum Computing, Micius Salon, No.8, 2018.
https://www.bilibili.com/video/av33951287?from=search&seid=14096248465856158266
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1. Introduction to QC
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1. Introduction to QC
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2. Complex Number
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2. Complex Number

m Motivation
e Algebraic equation

z?+1=0

e No solutions in the following number sets

> positive numbers, P={1,2, :--}

> natural numbers, N={0,1,2, -}

> integers (or whole numbers), Z={—2,-1,0,1,2, -}
> rational numbers, Q:{ﬂmeZ,neP}

> real numbers, R:QU{?-,ﬁ,-‘-,e, T -'-,E,-"}

3
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2. Complex Number

m Definitions

e Imaginary number ¢ such that

i2=-1or i=+/-1

e Complex number c€ C such that

c=a+bXi1=a-+ b1

» a € R is the real part of ¢
» b€ R is the imaginary part of ¢
> (C denotes the complex number set
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2. Complex Number

m Example
Example 1.1.2 Let ¢; =3 —i and ¢; =1 + 4i. We want to compute ¢; + ¢; and
C1 X (.
aa+eo=3—-i+14+4i=0B+1)+(-1+4)i=4+3i. (1.6)

Multiplying is not as easy. We must remember to multiply each term of the first
complex number with each term of the second complex number. Also, remember
that i* = —1.

axeo=0B-i)x(1+4i)=0CBx1)+Bx4i)+ (—i x 1)+ (—i x 4i)
— (3+4)+ (=1 +12)i =7+ 11i. (1.7)
[]
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2. Complex Number

m Proposition (apER)

Proposition 1.1.1 (Fundamental Theorem of Algebra). Every polynomial equa-
tion of one variable with complex coefficients has a complex solution.
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3. The Algebra Property

m Ordered-Pair representation”
c=a-+bi— (a,b)
m Examples

e Ordinary real number a=a—+0-i+— (a,0)

e Imaginary number =0-+1-¢— (0,1)

* It is not a vectorization. See its multiplication operation.
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3. The Algebra Property

m Addition

e |t add pairs componentwise
CL T Co= (a/labl) =+ (a'27b2) — <a1‘|‘a2ab1‘|‘bz)

m Multiplication
¢ X c2 = (a1,01) X (a2,b2) = (@162 — b1bs, 165 + a2by)

m Note
c=a-+bi= (a,b) = (a,0) + (0,b)

= (a,0) + (b,0) X (0,1)
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3. The Algebra Property

m Example

Example 1.2.1 Let ¢; = (3,-2) and ¢; = (1,2). Let us multiply them using the
aforementioned rule:

g xcr=0383x1—-(-2)x2,-2x1+2x3)
=(3+4,-2+6)=(7,4)=T7+4i. (L.15)

m Additive identity (DIiZ&EA{ITT)
VeeC, ¢+ (0,0) =c¢

m Multiplicative identity (GREEE1\JT)
VeeC, ¢x (1,0)=(1,0) Xe=c
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3. The Algebra Property

m Commutativity
e Both operations are commutative
C1‘|_02:CQ+01 and C1 X Co=20Cy X
m Associativity

e Both operations are associative
(ciFe) tes=ci+ (e2tes) and (1 Xcr) Xeg=c1 X (€2 X ¢3)

m Distributive property (try to prove)

e multiplication distributes over addition
c; X (C2_|_Cg) :Cl><CQ_|_Cl><C3
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3. The Algebra Property

m Proof for distributive law

Let us verify this property: first we write the complex numbers as pairs ¢; = (ay, by),

¢z = (az, by), and ¢3 = (aa, b3). Now, let us expand the left side
c1 % (€2 + ¢3) = (a1, b1) x ((az, b2) + (as, b3))
= (a1, by) x (a + a3, by + bs)
= (a1 x (a2 +az) = by x (ba + bs),
a; x (b2 + b3) + by x (a2 + a3))
= (a; x a» +ay, x a3 — by x by — by x bs,
ay x by +a; x b3+ by x ar + by x a3).
Turning to the right side of Equation (1.20) one piece at a time gives
cixo=(ayxa—by xby,ay x by +a» x by)
c1 X ¢3 = (ay x a3 — by x by, a; x by +as x by);
summing them up we obtain
c1 X +c1 xe3=(ay xay—by x bh+ay; x az — by x b,
ay x by +ax x by + ay x by + az x by),
which is precisely what we got in Equation (1.21).
2024/3/19 {Quantum Computing)
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3. The Algebra Property

m Subtraction
C1 — Co— (a17b1> — <027b2) — (al—a2,bl_bz>

m Division (try to prove)

S (@y,b1) _ <a1a2‘|‘b1b2 agbl—a162>
ca  (a2,bs) as +b; 7 as+0b;

(RREBAFFE 2018452 AL EF 5 E LTI BRIE AR IR)
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3. The Algebra Property

m Partial proof for division equation

As for division, we have to work a little: If

(x,y) = (. by’ (1.26)
then by definition of division as the inverse of multiplication

(a1, b1) = (x, y) x (a2, by) (1.27)
or

(a1, b1) = (a2x — bay, a2y + bax). (1.28)
So we end up with

(1) ay = ax — by, (1.29)

(2) b = ary + byx. (1.30)
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3. The Algebra Property

m Absolute value of a real number

lal =++/a

m Modulus of a complex number
lc| = |a+bi| =+ +/a®+ b2
& |el?=a*+b’

> Property 1: Ve;,co € C, |ci| |co| = |eicsl
> Property 2: Ve;,co € C, |c; 4 co| < |ei| + e

(RRGHBASFE 20182 R E[E]F451E I TiProperty 2By ATHEIR)
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3. The Algebra Property

m Conjugation
e Change the sign of the imaginary part
original: ¢ = a + b1

conjugate: ¢ =a — b1

> Conjugate respects addition ¢ +¢c:=c¢ + ¢

» Conjugate respects multiplication ¢; X ¢, = e X ¢
e Conjugation c—— ¢ is bijective
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Supplementary material

m Injective (EBHY) , surjective (j%5Y) and bijective (XU5Y)

A A A A
ol el Chaa U SmdE
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o o @ ———>»0 O O .>§O
o/o o o/ o e
General Injective Surjective Bijective
Function Not surjective Not injective (injective and

surjective)

> Injective means every "A" has its own unique matching
member in “B”

> Injective is strictly 1:1 (1:N and N:1 are NOT OK)

Image source: https://www.jianshu.com/p/09e6df559970
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Supplementary material

m Injective (EBHY) , surjective (j%5Y) and bijective (XU5Y)

A A A A
ol el Chaa U SmdE
o o o o o ) o s)
o—/—/;o o— >0 070 o o
o o @ ———>»0 O O .>§O
o/o o o/ o e
General Injective Surjective Bijective
Function Not surjective Not injective (injective and

surjective)
» Surjective means every “B” has at least one matching “A’
> Bijective means both injective and surjective

Image source: https://www.jianshu.com/p/09e6df559970
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4. The Geometry Property

m Complex plane and parallelogram rule

e The Cartesian representation

Imaginary

Real

Figure 1.3. Parallelogram rule.

Figure 1.1. Complex plane. Cartesian NAT 4 B R /R?
https://www.zhihu.com/question/23903885/answer/26029956

2024/3/19 {Quantum Computing) 21



4. The Geometry Property

m From Cartesian-to-Polar representation
c=a-+bi— (a,b) — (p,0)
where p=1+/(a®+ b?)
and 0 =atan2(b,a) € (-, 7]

e Some alias
» P : length, magnitude
> 0 : time, phase

(RFtshF = 2018 RERERIFIHELTTtan' AP HaS A EEIR)

(RRGBASRFE 2020 R EZE KFEIFIRELTTtan ' AEESEE$EIR)
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*MNFEI5AR

m KTatan2RRZ4HAH

o atan22— LN, ECGESEREIVERIELMUA, CiES*atan2BYRER
B double atan2(double y, double x) , REILATERTE y/x BIRIET,
y 1 x ENAFSAE 7 IERISIRE. thref IR ATTEEE x+yi BVER

(arctan(=>) >0
arctan( ) + 7 y>0,z<0
y
atan2(y, z) = { arctan() — 7 y<0,z<0
+3 y>0,z=0
_g y<0,z=0
| undefined y=0,z=0

SZ %8 atan2, https://baike.baidu.com/item/atan2/10931300?fr=aladdin
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4. The Geometry Property

m Why Polar representation

e For fast multiplication and division
multiplication: ¢; X ¢, = (p1,601) X (p2,02) = (p1p2, 01+ 6,)

division: — = <ﬂ, 9, — 02>

Co P2

e For fast power and root calculation

n™ power: ¢" = (p",n0)
1

1 1
n™ root: ¢" = (p”,%(é’—l—k%r)), k=0,1,--,n—1
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4. The Geometry Property

m Benefits of Polar representation

® Multiplication i XCy= (,01,91) X (,02,92> — (,01P2,91‘|‘92)

m Example

Figure 1.7. Two complex numbers
and their product.

2024/3/19

Example 1.3.4 Letc; =1+ and ¢z = —1 + i. Their product, according to the al-
gebraic rule, is

cic2=(1+i)(-1+i)=-2+4+0i = -2 (1.61)
Now, let us take their polar representation
T 3T

Cy =(\E~ 1) 2 = (Vﬁ I) {162}

(Carry out the calculations!) Therefore, their product using the rule described ear-
lier is

1y = (JE x V2, %Jr 3%) = (2. 7). (1.63)

If we revert to its Cartesian coordinates, we get
(2 x cos(m), 2 x sin(m)) = (-2, 0), (1.64)

which is precisely the answer we arrived at with the algebraic calculation in Equa-
tion (1.61).
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4. The Geometry Property

m Benefits of Polar representation
e Division : a_ ﬁ,el—ez
Co P2

H Exa m p I e Example 1.3.5 Let ¢y = =1+ 3i and ¢z = =1 = 4i. Let us calculate their polar co-

ordinates first:

¢ = (\;{_1)2 + 32, tan™! (il)) = (10, tan~!(=3)) = (3.1623, 1.8925),

s = (vf{_nz + (—4)2, tan™! (:_i')) = (+/17, tan~'(4)) = (4.1231

therefore, in polar coordinates the quotient is

ey (31623
c (4.1231‘

C2
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(1.70)

—1.8158),

1.8925 — (—1_8158)) = (0.7670, 3.7083).

(1.71)

(1.72)

O
26




4. The Geometry Property

m Benefits of Polar representation
e n-th power: ¢"= (p",nbd)

m Example

Figure 1.9. A complex number and its square and cube.
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4. The Geometry Property

m Benefits of Polar representatlon

1

e n-th root: c —(,0 ,—(0—|—k27r)>, k=01, .n—1

m Examples

Figure 1.10. The three cube roots of Figure 1.11. The seventh root of unity and its
unity. powers.

(Rt A LB REET 20222 3K MEE] 48 H AT FE S R FITHIEIR)
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4. The Geometry Property

m From Polar-to-Cartesian representation
c=p(cos(9) +1 sin(0))

m Euler Equation
e =cos(0) +1i sin(0)

m New Cartesian Representation

c=pe
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Conclusion

1. Introduction to Quantum Computing
» Superposition
» Quantum Computer vs. Classic Computer

2. Complex Number

3. The Algebra Property
» Ordered pair representation
» Modulus
» conjugate

4. The Geometry Property
» Benefits of polar representation
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